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Critical behaviour of semi-infinite systems 

A J Bray and M A Moore 
Department of Theoretical Physics, The University, Manchester, M13 9PL, UK 

Received 20 April 1977 

Abstract. The critical behaviour of a semi-infinite system with O ( n )  spin symmetry is 
investigated using four techniques: (i) mean-field theory, (ii) exact solution for n =CO, (iii) 
the E expansion, and (iv) scaling arguments. The surface equation of state is computed 
using mean-field theory, and the four phase transitions defined by Lubensky and Rubin, 
the ‘ordinary’, ‘surface’, ‘extraordinary’, and ‘A = CO’ (‘special’) transitions, are identified. 
The first three may be observed in the bulk system by adding a suitable ‘surface’ 
perturbation which destroys translational invariance. Scaling arguments give their critical 
exponents exactly in terms of bulk exponents. Critical exponents for the ‘A =CO’ tran- 
sition are determined for n = CO and also to O(E) .  Spin-spin correlation functions at 
T = T, for the ‘ordinary’, ‘extraordinary’ and ’A = CO’ transitions are calculated exactly for 
n =CO. 

1. Introduction 

The effects of surfaces on phase transitions have received a great deal of attention in 
recent years. Techniques developed for the study of phase transitions in bulk systems 
have been applied to systems with surfaces, with varying degrees of success. Such 
techniques include mean- field theories (Mills 197 1, Kaganov and Omelyanchouk 
1971, BCal-Monod et a1 1972, Weiner et a1 1973, Wolfram et a1 1971, Binder and 
Hohenberg 1972, 1974, Lubensky and Rubin 1975a), high-temperature series 
expansions (Binder and Hohenberg 1972, 1974), low-temperature series expansions 
(Barber 1973a, b), Monte Carlo analyses (Binder and Hohenberg 1974, Binder 1972), 
scaling analyses (Binder and Hohenberg 1972, 1974, Barber 1973a, Fisher 1971, 
1973), e expansions (Lubensky and Rubin 1973, 1975b), exact solutions for the 
two-dimensional Ising model (McCoy and Wu 1967, Fisher and Ferdinand 1967, 
Ferdinand and Fisher 1969, Au-Yang 1973) and exact solutions for two spherical 
models (Fisher and Barber 1972, 1973, Barber 1974, Barber et a1 1974, Singh et a1 
1975). 

It has recently become apparent that the theory of phase transitions in semi- 
infinite systems is much richer than had hitherto been supposed. Using a mean-field 
theory analysis, Lubensky and Rubin (1975a, to be referred to as LR) have identified 
four separate phase transitions associated with the surface. They call these the 
‘ordinary’, ‘surface’, ‘extraordinary’ and ‘A = 00’ transitions though we shall see later 
that this nomenclature is not entirely satisfactory. We review the LR classifications 
scheme here. The phase transition is modelled by the usual Ginzburg-Landau- 
Wilson Hamiltonian for a system with O(n) spin symmetry, containing an extra 
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‘surface’ contribution: 

H =  5 ddx[:t i = l  f d?(x)+t i = l  f (Vdi)’+!( 4 i = l  f d ? ( ~ ) ) ~  

Here &(x) is the ith Cartesian component of the n-component order parameter, and 
to= ( T -  Tcm) where TTF is the mean-field transition temperature. The integration 
over x in equation (1.1) is over the half-space z 3 0 .  The term in c is a surface 
perturbation which changes locally the value of TYF. For a spin model on a lattice, 
with nearest-neighbour exchange interaction J (1+  A) between spins in the surface 
layer, and exchange interaction J between all other nearest-neighbour pairs of spins, 
it may be shown that (Mills 1971, Binder and Hohenberg 1972, 1974, LR) 

c = [ 1 - 2(d - ~ ) A ] / u  (1.2) 

where d is the dimensionality of the system and a is the lattice spacing. In mean-field 
theory, the spontaneous magnetisation (dl(z)) is linear in z for small z and 
extrapolates to zero at z = -c-’. Therefore c-l is called the ‘extrapolation length’ in 
the literature and is usually denoted by the symbol A. 

The field h l  in equation (1.1) acts only in the surface and is parallel to the ‘1’ 
direction in spin space. A uniform field would produce an extra term in the Hamil- 
tonian, but we omit this for simplicity. 

The types of phase transition which are possible with the Hamiltonian (1.1) have 
been classified by LR using mean-field theory. For c > 0 the system orders at the bulk 
transition temperature T,. This is the ‘ordinary’ transition. For c < 0 the mean-field 
transition temperature in the surface exceeds that in the bulk, and the surface orders 
spontaneously at a higher temperature than the bulk. This is the ‘surface’ transition. 
As the temperature is lowered through the bulk critical temperature in the presence of 
the ordered surface, there is a second phase transition as the bulk orders. LR term this 
the ‘extraordinary’ transition. Finally, the case c = 0 corresponds to an enhanced 
exchange interaction between surface spins (see equation (1.2)) which is not quite 
strong enough to split off a surface phase. For this case the system orders at the bulk 
transition temperature, but the critical exponents and correlation functions differ from 
those of the ‘ordinary’ transition. LR call this the ‘A = 03’ transition (recall A = c-’). 
This terminology is a little unfortunate, however, since the concept of an extrapola- 
tion length has no validity outside mean-field theory (Binder and Hohenberg 1972). 
The ‘A = 00’ transition is associated with that value of c such that the enhanced surface 
exchange is not quite sufficient to split off a surface phase, and in general this critical 
value of c will be different from zero. For example, the work of Binder and Hohen- 
berg (1974) on the semi-infinite three-dimensional king model indicates that the 
existence of a surface phase requires A > A, = 0.6, compared to the mean-field value 
A, = 1/4. Equation (1.2) then gives the value of c appropriate to the ‘A = 03’ transition 
as c*--1*4/a. To avoid confusion we will use the term ‘special transition’ to 
describe the phase transition associated with this critical value of c. 

Of the four transitions described above, the ordinary and surface transitions 
(especially the former) have received by far the most attention in the literature, results 
for the extraordinary and special transitions being restricted to mean-field theory (LR). 
In the present paper we investigate all four transitions using a variety of techniques: 
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mean-field theory, exact solution at T = T, for the case n = a, expansion in powers of 
E = 4 - d, and scaling analyses. Mean-field theory is used to compute the surface 
equation of state, to exemplify all four transitions, and to introduce the ther- 
modynamic critical exponents. These will be labelled with subscripts '1' (to indicate 
that they are surface exponents) and superscripts s, e, sp corresponding to the surface, 
extraordinary and special transitions respectively. Exponents for the ordinary tran- 
sition will carry no superscripts, in accordance with standard convention. In the limit 
n +CO, spin-spin correlation functions at T = T, for the ordinary, extraordinary and 
special transitions may be computed exactly, and determine the correlation exponents 
in this limit. 

Perhaps the most significant result of the paper is the observation that the 
ordinary, surface and extraordinary transitions may all be observed in the bulk system, 
i.e. the system for which the integration in equation (1.1) extends over all space, 
because the terms in c and h l  break the translational invariance in the same way as a 
true surface. This observation enables us to use scaling arguments to determine 
exactly the critical exponents for these transitions in terms of the standard bulk 
exponents a, p, y, 6, 7 ,  Y, A, etc. For the infinite (i.e. bulk) system, however, the 
critical value of c for splitting off a surface phase is c* = 0: the 'surface' (i.e. the plane 
z = 0) orders at a higher temperature than the bulk for any c < 0, provided that the 
(d  - 1)-dimensional system can order spontaneously at finite temperature. Hence for 
the infinite system the special transition is replaced by the bulk transition, and we are 
therefore unable to determine the exponents of the special transition by means of 
scaling arguments. 

The paper is organised according to computational technique. Thus 0 2 is devoted 
to mean-field theory, 0 3 to the large n limit, § 4 to the E expansion, and 0 5 to scaling 
arguments. Sections 6 and 7 contain a discussion and summary of the results respec- 
tively. 

2. Mean-field theory: surface equation of state 

Mean-field theory has been applied to the semi-infinite problem by several authors 
(see 0 1). Although the techniques used here are, therefore, not new, a mean-field 
description serves to exemplify explicitly the four types of transition. In addition, our 
identifications of the critical exponents, particularly for the extraordinary transition, 
differ from those conventionally made, but are consistent with the scaling arguments 
of 9 5 .  A discussion of mean-field theory is therefore not without interest. 

The mean-field approach consists of minimising the Hamiltonian H of equation 
(1.1) with respect to the vector order parameter 4(x) = (41, . . . ,&). The vector 4(x)  
which minimises H will be parallel to the surface field h l  and, because of translational 
invariance parallel to the surface, will depend only on the distance z from the surface. 
Denoting its absolute value by m ( z )  we find (LR) 

m"(z)=  t m ( ~ ) + ~ m ~ ( ~ ) ,  z > o  (2.1) 

m'(O)= cm(0)- hl ( 2 . 2 )  
where primes indicate derivatives with respect to z .  Equation (2.1) may easily be 
integrated once, by multiplying through by m'(z) ,  to give 

(m'(z))'= t m 2 ( z ) + i u m 4 ( z ) + c  (2.3) 
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where C is a constant of integration. For t > 0 the magnetisation density m ( z )  decays 
to zero in the bulk, i.e. m'(z )<  0 and m(m) = 0 = "(a). Therefore we choose C = 0 
in equation (2.3) and take the negative square root to give 

?n'(z )=  -m(z) ( t  + tum2(z) )1 /2 .  (2.4) 

Using the boundary condition (2.2), and writing m(O)= ml, we obtain the equation of 
state for the surface: 

hl  = m l [ c + ( t + ; ~ m : ) ~ / ~ ] ,  t >o.  (2.5) 

For t<0,  the magnetisation density m ( z )  decays to the bulk value (-t/u)"* as 
z +CO. Therefore, we choose C = r2/2u in equation (2.3) so that we recover the bulk 
results "(a) = 0, m(m) = ( - t /u)1'2.  Since "(2) has the same sign as It1 - um2 (m'< 0 
if m(z)>m(m)  and vice versa), we take the negative square root in equation (2.3) to 
give 

" ( 2 )  = - (+u)1/2(m2(2)-  I t l /u) .  (2.6) 

Using the boundary condition (2.2) we obtain the surface equation of state for t < 0: 

1 
hl = cml +- (2u)'/2 (4 - Itl), tco. (2 .7 )  

2.1. The ordinary transition 

This corresponds to the case c >O,  and the limit hl  + 0. Equations (2.5) and (2.7) may 
be simplified by introducing the scaled variables 

giving 

h' = rir [ 1 + (i + rir 2)1/2], 

h' = 6 +&2-t /?( ,  7<0. 

i > O  (2.8a) 

(2.8b) 

The local susceptibility x1.1 gives the response of a spin in the surface to a magnetic 
field applied in the surface. Its singular part behaves as t-Y1.l as t + O ,  defining the 
critical exponent y l , l .  In scaled variables we have, for i > 0, 

giving 

(2.10) 

The spontaneous surface magnetisation varies as lflpi as i + O - .  Setting h ' = O  in 
equation (2.8b) yields 

% = tiii + o(?*) (2.11) 

p1= 1. (2.12) 

1 
y1.1=-2. 

giving 
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For 7 = 0, both equations ( 2 . 8 ~ )  and (2 .8b )  reduce to 

& = & + 6 2  (2.13) 

(2.14) 

Now we come to a subtle point. The critical exponent S1,1 would normally be defined, 
by analogy with the bulk definition, by the relation 6 Oc 6l’”.l as 6 + 0. According to 
equation (2.14), this definition gives = 1. However, this is somewhat misleading 
for the present case in which yl,l < 0 implies that the susceptibility ilV1 is finite at i = 0 
as shown explicitly in equation (2.9). For such a case ti is always proportional to 6 for 
small h: It makes sense, therefore, to disregard this ‘regular’ contribution to rii in 
computing 61,1, just as the ‘1’ in equation (2.9) was disregarded in computing yl,l. The 
value of S1,l is then determined from the second term on the right-hand side of 
equation (2.14), namely 

(2.15) 

All this becomes clearer when we try to write the equation of state in canonical scaling 
form: 

6 = i@if(6/iAi> (2.16) 

where the function f has different forms according to the sign of i ,  and A1 is the 
‘surface gap exponent’. From equation (2.16) one immediately derives the scaling 
laws 

1 
&,l = 5 .  

( 2 . 1 7 ~ )  

(2.17b) 

Elimination of A1 yields a relation between PI,  y1,1 and &,I :  

y1,1 = P1(81,1- 1) (2.18) 

which is satisfied by the exponent values given in equations (2.10), (2.12) and (2.15). 
Our definition of S1,l is motivated by a desire to preserve the validity of such scaling 
laws. Equations (2.8) can be written in the form of equation (2.16) if one first 
subtracts from 6 the regular contribution 6. The difference $I satisfies, in the scaling 
regime 6 << 1, 6 << 1, << 1 the equations 

( 2 . 1 9 ~ )  

(2.196) 

which have the form of equation (2.16) and from which one identifies 

(2.20) A -1 
1 - 2  

satisfying the scaling laws, equations (2.17). We have stressed these points rather 
strongly in order to emphasise that, in a case where the susceptibility is finite at the 
critical point, the critical exponents must be identified very carefully in order to 
preserve the scaling laws. This point will reappear in the discussion of the extra- 
ordinary transition. 
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2.2 The surface transition 

This corresponds to the case c C 0  and the limit hl+O.  Introducing the scaled 
variables 

in equations (2.5) and (2.7) yields the equation of state: 

h’ = G[(i + $22)1’2- -  11, 

~ = $ 2 2 - - ~ - + 1 : 1 ,  i < O .  
i > O  ( 2 . 2 1 ~ )  

(2.21b) 

In zero field the magnetisation may be computed in closed form: 

6 =o ,  T71 ( 2 . 2 2 ~ )  

(2.22b) 

(2.22c) 

The point = 1 gives the critical temperature for the surface transition. In terms of 
unscaled variables we have a critical temperature 

tc=  lCl2 (2.23) 

below which the surface orders spontaneously. We define the ‘bulk-surface crossover 
exponent’ 4s by the relation 

t c a l C I 1 / + s ,  l C l + O  (2.24) 

from which we deduce 

4 s 2  =1 (2.25) 

in mean-field theory. The thermodynamic exponents for the surface transition may be 
obtained by setting i = 1 + T in equation ( 2 . 2 1 ~ )  so that 7 measures the deviation from 
the surface critical temperature. In the scaling regime T << 1, 6 << 1, &<< 1 equation 
( 2 . 2 1 ~ )  has the scaling form 

6 = + k ( T  + $i2) (2.26) 

from which one deduces the exponent values 

( 2 . 2 7 ~ )  

(2.276) 

( 2 . 2 7 ~ )  

(2.27d) 
which satisfy the scaling laws, equations (2.17). The reader will note that these 
exponents are identical to the mean-field exponents for a bulk system and that 
equation (2.26) has the same form as the mean-field equation of state in the bulk, 
provided 6 is regarded for this purpose as a bulk field and ~ 1 , ~  as the usual bulk 
susceptibility exponent. This result is not surprising as one may readily suppose that 
the exponents associated with the surface phase of a d-dimensional system are simply 
the bulk exponents for the (d - 1)-dimensional system. This supposition is supported 

As - 3  
1 - 2  
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by a scaling argument in P 5 .  In mean-field theory, of course, the exponents are 
independent of dimensionality. 

2.3. The extraordinary transition 

In their pioneering work LR described the extraordinary transition as the onset of bulk 
order in the presence of spontaneous surface order, and therefore associated it with 
the case c < O .  We shall see, however, that the extraordinary transition is, in fact, 
much more general than this. It is associated with the onset of bulk order in the 
presence of an ordered surface, irrespective of how the surface order is achieved. In 
particular, the surface may be ordered, for any value of c, by simply applying a finite 
surface field h l .  Then the extraordinary transition is the ordering of the bulk at t = 0 
with hl  held fixed. 

For the moment, however, let us consider the extraordinary transition as originally 
conceived by LR, namely the case c < 0 in the limit h l  + 0. The spontaneous surface 
magnetisation 6i in the neighbourhood of the bulk transition (? = 0) is given exactly by 
equations (2 .226)  and ( 2 . 2 2 ~ ) .  Expanding these to O(f ' )  yields 

& = 1 - ; ? - p + 0 ( 7 3 ) ,  7>0 ( 2 . 2 8 ~ )  

& = I - '  2i - $i2 + 0(i3), i < O .  ( 2 . 2 8 b )  
Thus the magnetisation and its first derivative are continuous at f = O .  The leading 
singularity occurs at 0(i2), i.e. f i  has a discontinuity in its second derivative at ? = 0.  
Hence, we identify the surface magnetisation exponent as 

p ;  = 2 .  (2 .29 )  
Similarly one may compute the susceptibility il,l. For f > O ,  we write equation 
( 2 . 2 1 ~ )  as 

( 7 + f i Z ) ' / 2 =  l+(L/r i t )  

G 2  = 1 - i + [2L / (1  -?)1/2] +0(LZ) 
giving 

or 

i1,1= (1 - i)-l, i>o. (2 .30 )  
For 2 < 0, we may solve equation (2 .21b)  in closed form: 

rit =$+$(I + 2111 +4L)'/2 
giving 

i 1 . J  = ( 1  - 2?)-'12, i<o .  
Equations (2 .30 )  and (2 .32 )  may be expanded to O(7'): 

ilSl = 1 + i + iz + 0(i3), 
il,l = 1 + i +;iz + 0(i3), 

f > O  

i < O .  

(2 .31 )  

(2 .32 )  

( 2 . 3 3 ~ )  

(2 .33  b )  
The singularity in ,fl,l is, like that in 6, a discontinuity in the second derivative. This 
leads to the identification 

y;,1 = -2 .  (2 .34 )  
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The reader should note that these identifications of the exponent values differ from 
those made by LR who, on the basis of the linear terms in equations (2.28), identified 
pf = 1 and, on the grounds that ,yl,l has regular series expansions above and below T,, 
identified yf,l = 0. We believe that the present identifications are more useful since 
they preserve the scaling laws, a point which will be discussed further in 0 5. The 
identification of exponents is, in any case, rather academic for the extraordinary 
transition since the singularities are so weak that they will be virtually impossible to 
observe experimentally. 

For the case of a fixed surface field hl ,  the extraordinary transition is observed for 
arbitrary c. To see this we return to our basic equations of state, (2.5) and (2.7), and 
consider the limit t + 0 at fixed h l .  Expanding the square root in equation (2.5) yields 

t 
h1= c m 1 + ( 4 u ) ” 2 m : + ~ - + o ( t 2 ) ,  t > O  ( 2 U y  

whereas equation (2.7) reads 

t 
h1= cm1 + ($u)1/2m: +- 

( 2 U ) ’ I 2 ’  
t < O  

(2.35) 

(2.36) 

exactly. To O(t) these equations are identical, and therefore provide expansions for 
ml in powers of t in which the linear term is independent of the sign of t. As in the 
case c < 0, h l  + 0 discussed above, the linear term is a regular contribution to ml(t), 
and the singularity in ml(t) takes the form of a discontinuity in the second derivative. 
The identifications py = 2, -y;,l = -2 are thus seen to be a consequence of ml being 
finite at t = 0, regardless of whether the ordering is spontaneous or the result of an 
applied surface field. 

We conclude by noting that, in mean-field theory, the singularity in the surface 
magnetisation (and susceptibility) is identical to that in the bulk free energy, namely, a 
discontinuity in the second derivative. In 0 5 we argue that this is a general result, 
valid outside mean-field theory, and hence that p ;  = 2 -a = -yr., where a is the bulk 
specific heat exponent. 

2.4. The special I: .mition 

In mean-field theory this is the case c = 0. According to equation (2.23), any negative 
value of c suffices to order the surface spontaneously below a critical temperature 
t, = 1cI2, Hence c = 0 is the critical value for splitting off a surface phase. The critical 
exponents are simply those of the bulk. Setting c = 0 in equations (2.5) and (2.7), 
these reduce immediately to scaling form (we set U = 2 for simplicity): 

t < O  

from which one identifies the exponent values 

Y ;:1 = t 
pi” = $ 

(2.37a) 

(2.376) 

(2.38a) 
(2.38b) 
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(2 .38~)  

(2.38d) 

satisfying the scaling laws, equations (2.17). These are the mean-field exponents for a 
bulk system, where the field related exponents yl,l,  and Al refer to a field applied 
in the plane z = 0 only. Thus mean-field theory does not distinguish between an 
infinite and a semi-infinite system, at least as far as critical exponents are concerned 
(the correlation functions do differ slightly, see Q 3). The equivalence of the special 
and bulk transitions does not hold outside mean-field theory, however. For the 
infinite system, the critical value of c for splitting of a surface phase is always c = 0 
(8 5 ) ,  corresponding to the bulk transition, whereas for the semi-infinite system the 
critical value of c, which in this case corresponds to the special transition, is expected 
to be different from zero in general ( 0  4). 

3. Exact results for n = 00 

Most of the recent advances in the theory of critical phenomena in bulk systems have 
been achieved by means of the renormalisation group approach. Excellent review 
articles on this technique have been written by Ma (1973a, b), Fisher (1974) and 
Wilson and Kogut (1974). In terms of explicit calculations, the most useful results 
have been achieved by means of the Wilson-Fisher E expansion (Wilson and Fisher 
1972, W i l s o ~  1972), and the l / n  expansion (Abe 1972, 1973a, b, Abe and Hikami 
1973, Hikami 1973, Ma 1973a, b, Ferrell and Scalapino 1972a, b, BrCzin and Wallace 
1973), where E = 4 - d and n is the number of components of the order parameter (or 
‘spin dimensionality’). 

For surface problems the lack of complete translational invariance renders these 
techniques much more difficult to apply. A calculation to order E of the critical 
exponents for the ordinary transition, and of the spin-spin correlation function at 
T = T,, has been performed by Lubensky and Rubin (1973, 1975b) using the full 
renormalisation group approach. As for the l / n  expansion, the n = CO limit itself, 
which is trivial in the bulk, has only recently been solved (Bray and Moore 1977a) for 
the ordinary transition. The computational problems involved in finding O( l/n) 
corrections seem totally intractable at this time. In this section we present exact 
calculations of spin-spin correlation functions for the ordinary, extraordinary and 
special transitions, in the limit n = 03. 

First, however, we should make a few remarks about the spherical model. This 
model was invented by Berlin and Kac (1952) as an approximation to the Ising model. 
It consists of an array of Ising spins ui for which the restriction ui = *1 for all sites i is 
removed in favour of allowing the spins ui to be continuous variables with a Gaussian 
distribution such that (&= 1, subject to an overall constraint that the sums of the 
squares of all the spins be equal to the number of spins N, i.e. X.i”ll a? = N. A revival 
of interest in this rather unphysical model stems from Stanley’s demonstration (Stan- 
ley 1968) that its partition function is identical to that of a generalised Heisenberg 
model, with n-dimensional spin vectors, in the limit n +03. Since that time the 
expressions ‘n = 03 limit’ and ‘spherical model’ have often been used interchangeably 
in the literature. 

Stanley’s proof of the equivalence of the usual spherical model and the n = CO limit 
breaks down for the surface problem. Rather it seems likely that the n = 03 limit for 
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this case corresponds to a spherical model in which a spherical constraint is applied 
separately to each layer parallel to the surface. Indeed, the first terms in a high- 
temperature series indicate that the system with n = CO and the system with constraints 
on each layer are equivalent and distinct from the system with the spin constraint 
applied to the entire system (A B Harris 1975, private communication cited in 
Lubensky and Rubin 1975b). The seeming intractability of a spherical model with an 
infinite number of constraints has prompted several authors to consider two semi- 
infinite spherical models. The first has a single overall constraint as in the bulk 
spherical model (Fisher and Barber 1972, 1973, Barber 1974, Barber er a1 1974). 
The second has an overall constraint plus a separate constraint on the surface layer 
(Singh et a1 1975). Neither of these models is equivalent to the one considered here 
and both disagree with the exact results for the n-vector model in d dimensions 
presented in § 5. This point will be discussed further in 0 5. 

To summarise, we consider here the n = 00 limit of the continuum model des- 
cribed by the Hamiltonian, equation (1.1) with zero surface field, h l = O .  For the 
moment let us regard the integration over x in equation (1.1) as extending over all 
space. Our aim is to compute the spin-spin correlation function 

where @, z )  is a parametrisation of the position vector x in which is a coordinate 
perpendicular to the surface and p is a (d - 1)-dimensional vector giving position in a 
plane parallel to the surface. Translational invariance parallel to the surface implies 
that G only depends on the separation of the spins parallel to the surface, but depends 
separately on z and z ’ ,  as indicated in equation (3.1). Note that 5 D + . .  . means a 
functional integration over all order parameter configurations, and that G is inde- 
pendent of i due to the spin isotropy of the model. 

The first step is to compute the mean-field correlation function (or ‘propagator’) 
g@, z,  z ’ )  corresponding to the case U = 0 in equation (1.1). It is convenient to utilise 
the translational invariance parallel to the surface by introducing the (d - 1)-dimen- 
sional Fourier transform & ( k , z )  of the order parameter, in terms of which the 
Hamiltonian becomes (with U = 0 = hl )  

dd. 00 

Ho= 1-m dz k i = l  f [ i ( t+k2+c8(z ) )&(k , z )&( -k ,  .)+‘(e) Z 1. (3.2) 

If we neglect the term in c, i.e. the ‘surface’ term, the Hamiltonian may be diagonal- 
ised by introducing the Fourier transform with respect to z ,  &(k, k J  to give 

(3.3) 

which is the standard ‘Gaussian model’. The corresponding correlation function is 

&“)(/cl)= (&k, kL)&--k, -kl)) = ( r  + k 2 +  k?)-’ 

$p)(z, z ’ ) =  (1/2~)exp(-rc(z -2’1) (3.5) 

K = ( t  + kZ)l’*. 

(3.4) 
with Fourier transform 

where 

(3.6) 
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The ‘surface’ term in equation (3 .2)  is now introduced as a perturbation. Graphical 
methods are most convenient, as shown in figure 1.  The single line is the bulk 
propagator, equation (3.5),  the cross carries a factor ( - c )  and the double line is the 
result of summing all orders in c. The result is 

&(z,  z’)= ,ijp’(z, z’)-Cgi0)(z, O)&(O, 2’). (3 .7 )  

k - k k ”  k + - n 
z z ‘  z z ’  z 0 2 ’  

+ n , + . . . e  
k k k 

z 0 s z 

Fignre 1. Graphical expansion of the mean-field correlation function in powers of c.  

(3 .8)  

C 
( 3 . 9 ~ )  

2 K  

using equation (3.5).  For a semi-infinite system the equivalent result is (LR) 

C - K  

C f K  
(3 .96)  

To make progress for the case U # 0, we have found it necessary to remove from 
the problem as many lengths as possible. To this end we set t = 0 (i.e. work at the 
critical point) and take the limit c +a. Thus we set the correlation length equal to 
infinity and the ‘extrapolation length’ equal to zero, to obtain 

1 1 &(z,  z ’ ) = z {  exp(-klz -2’1)-exp[-k(z + z ’ ) ] } = - f ( k z ,  kz’) 
k (3.10)  

for both infinite and semi-infinite systems, provided z ,  2 ’ 2  0. Thus the infinite and 
semi-infinite systems are exactly equivalent for c = a. (Note that for c = a equation 
( 3 . 9 ~ )  implies B(z,  z ’ )  = 0 if z > 0, z‘ < 0 or vice versa, so that the two half spaces 
‘decouple’ in this limit.) Observe that for t = 0 one recovers equation (3.10) from 
equations (3 .9)  for arbitrary c,  provided that one is in the scaling regime k << c. Taking 
the limit c + a is simply a device for expanding the scaling regime, so that the simple 
scaling form equation (3 .10)  holds for all k.  

In the large n limit, the quartic term in equation ( 1 . 1 )  is conveniently written as 

HI  = U I ddx( f &(x))’ 
4n i=l  

(3 .11)  
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where we have put U = uo/n to ensure that the correlation function is independent of 
n in the limit n -00. This term is a perturbation to the Hamiltonian Ho of equation 
(3.2) and is represented by a four-point interaction in a graphical perturbation 
expansion. For n =CO, only graphs with the maximal number of closed loops con- 
tribute at each order in uo, since each closed loop carries a factor n (from a sum over 
spin labels) which exactly cancels the factor l / n  associated with each vertex. Hence 
for n = CO the full correlation function satisfies the equation represented graphically in 
figure 2, where a single line is now the mean-field propagator, equation (3.10), the dot 
carries a factor (-uo) and the double line is the result of summing to all orders in uo. 

P 

Figure 2. Graphical equation for the exact correlation function for n =CO.  

The exact correlation function &(z, z ’ )  thus satisfies the integral equation 

where the potential V(x) is the loop in figure 2: 

(3.12) 

(3.13) 

Two comments are required here. Firstly, the second term in equation (3.13) is a 
‘mass subtraction’ designed to compensate for the shift in the bulk T, introduced by 
the quartic term equation (3.11). It corresponds to replacing t by ~ - U ” ( $ J ~ ( C O ) )  in 
equation (3.2). With this replacement, the bulk critical point remains at t = O  for 
non-zero uo. Secondly, A in equation (3.13) is a large momentum cut-off for momenta 
parallel to the surface. Since the cut-off has been taken infinite for the perpendicular 
momentum component kl (e.g. in going from equation (3.4) to equation (3.5)), the 
Brillouin zone employed is an infinitely long right-circular cylinder of radius A. 

The integral equation (3.12) may be converted to a differential equation by taking 
two derivatives with respect to z and noting that, from equation (3.10), 

Thus one obtains 

(3.14) 

(3.15) 

By analogy with equation (3.10), we seek a solution of scaling form: 

e,<,, z ’ ) =  (l/k)F(kz, kz’).  (3.16) 
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Dimensional analysis of equation (3.15) shows that such a solution is only possible if 
V ( Z ) C C Z - ~ .  Therefore we write 

V ( z ) =  (p2--a)/z2, (3.17) 

where p is as yet undetermined. Equation (3.15) may now be solved in terms of 
modified Bessel functions (Abramowitz and Stegun 1965): 

& k ( z ,  2‘) = (zz’)1’21w (kz)K,(kz’), z <z’ (3.18a) 

&k (2, z ’) = (22 ’)1’2Kw ( kz)I ,  (kz ’), (3.186) 

In principle a term like (z~’)’’~I,(kz)I,, (kz’ )  could be added to the right-hand sides of 
both equations (3.18). It is excluded by the boundary condition that the bulk cor- 
relation function & 00 m)= 1/2k is recovered as z ,  z’+00. It might also be thought 
that a term like ( z z  ) K,(kz)K,(kz’) could be added to both equations since it 
vanishes at infinity. Addition of such a term is precluded, however, by a rather subtle 
point which is most easily made by examining the eigenfunctions cC/(k, p, 4, z )  of the 
linear operator in equation (3.15). These satisfy the equation 

[ V 2 + k 2 + q 2 - ( p 2 - $ ) / 2 ] + = 0 .  (3.19) 

z > z r .  

l i Z  

The eigenfunctions corresponding to the eigenvalue ( k 2  +q2)  are 

G exp(ik P)J,(4Z) and G exp(ik. p)~-,(qz). 

Note that linear combinations with different q values are not orthogonal, so that 
mixtures of the eigenfunctions form an over-complete set of states. The only satis- 
factory orthonormal functions are the given pure eigenfunctions. This situation occurs 
generally for potentials as or more singular than z -2  (Case 1950). The expression for 
& k ( t , z ’ )  in equations (3.18) then results from the use of the standard relation 
between the Green function and the eigenfunctions, 

(3.20) 

when the eigerifunction associated with the Bessel function of index p is substituted 
for $. Only improper linear combinations of eigenfunctions give rise to terms in & 
like (zz’)’/’K, (kz)K, (kz’) ,  so we can conclude that such terms are absent. 

It is convenient to rewrite the expression for the potential V ( z )  in equation (3.13) 
as the sum of two terms, V ( z )  = Vl(z)+ V2(z) ,  where 

(3.21a) 

(3.216) 

Inserting the solution, equation (3.18), into equation (3.21) yields 

dt tdP3( t4 ,  (t)K, ( t )  - 4) (3.22) 

(3.23) 
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and T ( x )  is the gamma function. Using the asymptotic expansion of the product 
I,(t)K,(t) for large argument yields 

UOKd-1 J W ( 4 W  2 -‘+0(~-4)) V & ) = 7  d t t d - 3  - 
AZ 16t2 

(3.24) 

2 s r  4 where E = 4-d as usual. Let us neglect for the moment the terms of O(u/A  z ) in 
equation (3.24). Then for V(z) to have the assumed form, equation (3.17), we require 
firstly that V , ( z )  vanish, since it has the ‘wrong’ z dependence. The vanishing of the 
integral in equation (3.22) determines p. Secondly, we require for consistency that 
the coupling constant uo have a particular value: 

U o =  Uw=4€AC/Kd-1. (3.25) 

This special choice of coupling constant removes ‘slow transients’ of relative order 
(k/A)’ from the correlation function and its choice is analogous to the special choice of 
coupling constant in Wilson’s €-expansion technique for bulk systems (Wilson 1972). 
In fact, uw is identical to Wilson’s ‘magic’ value for an n =CO bulk system with the 
same Brillouin zone as that used here, namely, an infinitely long cylinder of radius A. 
The choice uo = uw is similar in motivation to the choice c = CO which we made earlier: 
it is a convenience designed to expand the scaling regime and increase the range of 
validity of the simple scaling form, equation (3.16). Note that the scaling regime can 
be expanded to infinity, so that equation (3.18) becomes exact for all k, z and z’, by 
choosing the ‘surface potential’ to exactly cancel the terms of O ( U / A ~ + ~ Z ~ )  which we 
neglected in equation (3.24). This means replacing, in the semi-infinite model des- 
cribed by the Hamiltonian of equation (l.l), the ‘surface potential’ cS(z)  by u ( z )  
where 

u ( z ) =  (p2-i)/z2- V&). (3.26) 

Then the effective potential obtained by combining the surface potential with that due 
to the loop insertion in figure 2 is v ( z ) +  V2(z)= (p2-i)/z2, yielding equation (3.18) 
as an exact result for all k, z and 2’. Then the propagator b ( z ,  z’) in equation (3.12) is 
the mean-field propagator for the surface potential v(z ) .  For a general short-range 
surface potential of range -A-’ (i.e. of the order of a lattice spacing) the result, 
equation (3.18), is restricted to the scaling regime zA,  z’Ax-1, k/A<< 1. We have 
shown elsewhere (Bray and Moore 1977a) that in this context a ‘short range’ surface 
potential is one which decays faster than z-2 at large 2. All such potentials are 
expected to produce identical critical exponents and, in the scaling regime, identical 
correlation functions. 

It remains to determine the value of the Bessel function index p. It is fixed by the 
condition that the integral in equation (3.22) should vanish. This integral is evaluated 
in the appendix. The result is 

(3.27) 

The validity of equation (3.27) is restricted, by the requirement that the integral 
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converges at its upper and lower limits, to dimensionalities d satisfying 

max(2, 1 - 2 p ) <  d < 4 .  (3.28) 

Zeros of the right-hand side of equation (3.27) occur at p +1(3-d)= 0, -1, - 2 , .  . . . 
Only the values 0 and -1, however, are compatible with equation (3.28), which yields 
ranges 2 < d < 4 and 3 < d < 4 for ,U +1(3 - d )  = 0, -1, respectively. Hence the two 
possible solutions, and their ranges of applicability, are 

(3.29) 

(3.30) 

3.1. The ordinary transition 

The solution p = (d  - 3)/2, equation (3.29), is identified with the ordinary transition. 
To see this one observes that for d = 4 the special value of the coupling constant 
chosen here, uw, vanishes (equation (3.25)). Therefore, for d = 4 the present theory 
should reproduce the mean-field theory result, equation (3.10). This singles out the 
root p = (d  -3)/2 since equation (3.18) with p = t  gives equation (3.10). (Note, 
however, that mean-field theory is not exact for d = 4: there are logarithmic cor- 
rections. Hence the inequalities d < 4  in equations (3.29) and (3.30)) 

The correlation function in real space is obtained by setting p = (d -3)/2 in 
equations (3.18) and taking the Fourier transform. The result ist 

The final result is remarkably simple: P ~ + ( z - z ’ ) ~  is the square of the distance 
between the spins and p2 + (z + 2’)’ is the square of the ‘image’ distance-the distance 
between one spin and the reflection of the other in the plane z = 0. The bulk 
correlation function for n = CO is simply equation (3.31) with the ‘image’ term missing. 
Three limiting cases of equation (3.31) are of special interest. 

C a s e l .  z ,z ’+mwithp ,z-z’ f ixed .  
In this limit 

the usual bulk result with bulk exponent 77 = 0. 

Case 2. z’ + 00 with p, z fixed. 
In this limit 

?The angular integral is straightforward and the radial integral may be found in Gradshteyn and Ryzhik 
(1965). 
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defining the critical exponent vl, given for n = Q) by 

771 = $(d - 2).  (3.32) 

Case 3. p +CO with 2, z’ fixed. 
In this limit 

defining the critical exponent 7711, given for n = CO by 

771, = d - 2. (3.33) 

The exponents q1 and 7711 for the ordinary transition have been computed to O(E) ,  for 
arbitrary n, by Lubensky and Rubin (1975b): 

n + 2  
771= P $ ( X ) € + O ( E 2 )  

7711 = 2 - (-)€ n + 2  + O(E2). 
n + 8  

( 3 . 3 4 ~ )  

(3.348) 

For n = CO equations (3.34) reduce exactly to equations (3.32) and (3.33), indicating 
that the 0(e2) terms in equations (3.34) are O(l/n). Lubensky and Rubin also 
calculated the spin-spin correlation function at T = T, to O(E) .  On the basis of their 
result they conjectured that G(p, z,  z ’ )  has in general the form 

(3.35) 
1 G@, z,  z ’ ) =  constant x 

where 

r 2 = ( t - Z ’ ) 2 + p 2 ,  f 2 = ( z + z ’ ) 2 + p 2 ,  

For n = CO, this result reduces, after some rearrangement of terms, to equation (3.31). 
Hence the Lubensky-Rubin conjecture is confirmed, for arbitrary dimensionality, for 
the case n =CO. 

3.2. The special transition 

The solution p = (d - 5)/2, equation (3.30), is identified with the special transition. 
Recall that in mean-field theory, the special transition corresponds to a semi-infinite 
system with c = 0 (an infinite system with c = 0 gives, of course, the bulk transition). 
The mean-field propagator at the special transition is, therefore, obtained by putting 
c = 0, K = k in equation (3.9b): 

& (z ,  t ’) = (1 / 2  k Xexp(- k )z  - 2’1) + exp[-k ( z  + z ’)I}, (3.36) 

which differs from equation (3.10) in the sign of the second (‘image’) term. Neverthe- 
less, this &(z, 2’) is of scaling form and satisfies equation (3.14) so that the arguments 
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leading to equations (3.18) still hold. For d = 4, equations (3.18) should reduce to 
equation (3.36)’ which implies that p = -4 and singles out the root p = (d - 5)/2 for 
the special transition. 

The restriction to dimensionalities in the range 3 < d <4 in equation (3.30) is easy 
to understand physically. The special transition corresponds to a surface potential 
which is not quite attractive enough to split off a surface phase. In a sense it represents 
a borderline between ordinary and surface transitions. Now for n = OC and d S 3 the 
surface transition does not exist (see P 5 )  since the (d  - 1)-dimensional system does not 
order. Therefore, the special transition does not exist either and the ordinary tran- 
sition is observed for all surface potentials. 

For CL = ( d  - 5)/2, the Fourier transform of Gk(z, 2’) cannot be written in a simple 
form like equation (3.31). The critical exponent vip, however, can be obtained 
directly from equations (3.18) which give, for p < 0 and k + 0 with z, z’  fixed: 

(3.37) 

(since I,, (x) - x p ,  &(x) - x-’” as x + 0). Therefore, for p + 00 at fixed z,  z’  we deduce 
that 

1 
Gb, 2, Z W - ,  p + a  (3.38) 

P 

giving 

?$= 1 +2k 

or 

= d - 4. 

(3.39) 

(3.40) 

A similar argument for p > 0 shows that equation (3.38) is valid regardless of the sign 
of p (e.g. p = (d  - 3)/2 gives 711 = d - 2, the correct result for the ordinary transition). 
The value of rli may be deduced from that of 7711 by using the scaling law (Lubensky 
and Rubin 1975b, and 0 5 )  911 = 2v1 - 77 to give 

V;’=$(d -4). (3.41) 

3.3. The extraordinary transition 

The extraordinary transition occurs at T = T, as the bulk orders in the presence of an 
ordered surface. Translational invariance parallel to the surface implies that the 
magnetisation density (which we assume to be parallel to the ‘1’ direction in spin 
space) depends only on the distance z from the surface, (q51(x)) = m(z ) .  Accordingly 
we write 

41(x)= m ( z ) + p ( x )  (3.42) 

and determine m ( z )  from the condition 
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Substituting equation (3.42) into equation (1.1) yields (with U = uo/n) 
n n 

i = 2  i = 2  
+(t + uom2(z)) +?(x)+$ (Vr#~i)’ 

(3.44) 

where the constant contains contributions to H which are independent of p ( x )  and 
&(A-), and ‘surface terms’ are the terms in equation (1.1) which involve 6(z) .  The final 
term in equation (3.44) may be integrated by parts: 

dp dm d2m 5 ddxVp .Vm = ddx- -=surface term- d d x p ( x ) T .  (3.45) 5 dz dz 5 dz 

The broken spin symmetry implied by the ordered surface means that there are two 
spin-spin correlation functions associated with the extraordinary transition: the 
‘longitudinal’ and ‘transverse’ functions 

GL@, z ,  2 ’ )  = (P@, z ) p ( O ,  2’)) 

~ ~ b ,  2, zf)=(41b, Z M i ( 0 ,  z’)) ,  i 2 2 .  

In this section we will discuss only transverse correlations. The longitudinal cor- 
relation function may be calculated in principle, but the computational problems are 
comparable to those encountered in the computation to order l / n  of the correlation 
function at the ordinary transition. 

By analogy with the treatment of the ordinary and special transitions, we seek a 
solution for &z(z, 2 ’ )  in the scaling form of equation (3.16). To this end we set t = 0 in 
equation (3.44) and take the limit c+-W. The ‘bare’ propagators for both lon- 
gitudinal and transverse fluctuations are then given by equation (3.10). These are the 
propagators derived from equation (3.44) when only the (Vp)’, (V#J~)’ and surface 
terms are taken into account. The remaining terms, which are linear, quadratic, cubic 
and quartic in p and di (i 2 2) are treated by graphical perturbation theory. The 
various types of vertices, and their associated factors, are given in figure 3. The 
magnetisation density m(z) is determined by equation (3.43) which is given in terms 
of graphs, for n = 00, by figure 4. Using the ide’ntifications given in figure 3, we derive 
the equation 

d2m 
-- m(z)(  u m 2 ( z ) +  uo c ( & ~ < x ,  x>-~:(00, a))) 
dz2 - P < A  

(3.46) 

where, as in equation (3.13)’ the final term contains a ‘mass subtraction’ introduced to 
compensate for the shift in T, when uo is non-zero. 

The transverse correlation function for n =CO is given by the graphs of figure 5.  
Using figure 3, we can write down the integral equation: 

&;(z, z ’ )=&(z ,  2 ’ ) -  dx V(X)&(Z, x )&~(x ,  2’) (3.47) 
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Figure 3. Various vertices appearing in the graphical expansions for the magnetisation 
density and correlation functions at the extraordinary transition, with their associated 
factors. L and T refer to longitudinal and transverse propagators respectively. 

z 2 

Figure 4. Graphs for ( p ( z ) )  for n = C O .  This equation determines m(z)  at the extra- 
ordinary transition. The double line is the exact transverse correlation function for n = CO. 

The single line is the longitudinal propagator, in which insertions of types (ii) and (vi) 
(figure 3) have been implicitly included (type (iv) insertions do not appear for n =a). 

Figure 5. Graphical equation for the transverse correlation function at the extraordinary 
transition for n =CO. 

which has a form identical to that of equation (3.12), except that now the potential 
V ( x )  is given by 

(3.48) 

making the usual mass subtraction. Note that equations (3.46) and (3.48) can be 

V ( x ) =  uom2(x)+ U0 1 (B,'(x, x)- &,'(a& a))), 
P < A  
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combined to give 

d2m/dz2 = V(z )m.  (3.49) 

In the usual way we require that V ( z ) =  ( p 2 - a ) / z 2 .  Then the solution is given by 
equations (3.18) and it only remains to determine p. To do this we rearrange equation 
(3.48) as 

The final term is just V2(x) (equation (3.21b)) and therefore, with the choice U O =  uw 
it gives, neglecting term of O(l/A2x4), exactly the desired potential (p2-a) /x2  (see 
equation (3.24)). Hence p is determined by the vanishing of the expression in square 
brackets in equation (3.50). Dimensional analysis (compare equation (3.22)) there- 
fore requires that 

(3.51) 

where A is a constant. Substitution into equation (3.49), with V ( z )  = ( p 2 - i ) / z 2 ,  
yields 

CL = (d - 1)/2, 2 < d < 4  (3.52) 

(d -7 -W m ( x ) = A / x  , 

the range of validity being given by equation (3.28). The constant A is determined by 
demanding that the expression in square brackets vanish in equation (3.50), where the 
sum over p may be evaluated using equation (3.27). The result is that A2>0 ,  as 
required for a real magnetisation density, for all d in the range 2 < d < 4. 

The exponent 7711 is given by the general result (cf equation (3.39)) 711 = 1 + 2p, i.e. 

(3.53) 

where the superscript T indicates that the exponent applies to transverse correlations. 
It may also be shown that 

q?T = d/2. (3.54) 

We argue in Q 5 that equations (3.53) and (3.54) are exact results. 
As usual, mean-field theory is a special case of the present calculation, obtained by 

setting d = 4, i.e. p = 3/2. The longitudinal correlation function, which is intractable 
for n =CO, has been computed in mean-field theory by LR who obtain (for zero 
extrapolation length) equations (3.18) with ,U = 5/2, and therefore find the critical 
exponent qf3L = 1 + 2p = 6. We show in 8 5 that the exact result (for all n )  is 

$L = d + 2. (3.55) 

All the results presented here have been restricted to the case T = T,. Unfor- 
tunately, we can see no way of obtaining exact results away from the bulk critical 
temperature, and for this reason have been unable to investigate the surface transition 
in the large n limit. The difficulty lies in the fact that for T # T, an extra length, the 
correlation length 6, enters the problem so that the scaling ansafz, equation (3.16), 
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becomes invalid. In addition, the potential V ( z )  presumably becomes temperature 
dependent. Similar difficulties accompany the generalisation to arbitrary c. At 
present we can see no way of surmounting these difficulties. 

4. The E expansion 

Critical exponents for the ordinary transition have been computed to O ( E )  by Luben- 
sky and Rubin (1973, 1975b) using the full renormalisation group approach. The E 
expansion for the extraordinary transition is dogged by severe computational prob- 
lems owing to the complicated nature of the mean-field propagators, i.e. products of 
modified Bessel functions. We concentrate here on the special transition, as this is the 
one case for which we have been unable to find scaling arguments which give the 
exponents exactly in terms of bulk exponents. The philosophy we adopt is that of the 
Wilson (1972) perturbation theory technique, in which a special value U ( € )  of the 
coupling constant is used, the value of which is chosen so that the logarithms which 
appear at each order in E can be identified as the expansion of a simple power law. In 
addition, we must choose a special value c = c*(E) appropriate to the special tran- 
sition. It is instructive to consider the semi-infinite and infinite problems separately. 

4.1. Semi-infinite problem 

The mean-field propagator for this case is given by equation (3.9b).  We work at the 
critical point (i.e. set K = k )  and for simplicity consider the surface plane z = 0 = 2': 

(4.1) gS'(0,O) = (c + k)-' .  

The exponent 711 may be obtained from the behaviour at small k (compare the 
arguments leading to equation (3.39)) via the observation that the singular part of the 
correlation function behaves as k"1-l as k + 0. For any finite c, the small k behaviour 
in mean-field theory is 

1 k  
g(0,O) = --7+. * . 

c c  

giving an exponent 711= 2, the usual mean-field result for the ordinary transition 
(compare equation (3.33) with d = 4) .  The case c = 0 is special, however, since then 
6?(0,0)= l / k  exactly. This is the special transition (the 'A = 00' transition of LR) with 
mean-field exponent tliP = 0 (compare equation (3.40) with d = 4) .  

Outside mean-field theory we expect the value of c appropriate to the special 
transition, c*, to be different from zero. Suppose c*  is O(E).  Then equation (4 .1)  may 
be expanded, (with c = c*, to O(E):  

1 c* 
@(O, O)=--- k k2fo(E2) '  (4.2) 

A further O ( E )  contribution to the full propagator &;'(O, 0) is given by the graph of 
figure 6 .  The lines are given by equation (3 .9b)  (with K = k ) ,  and we may take c = 0 
in this graph, rather than c = c*, since the resulting error is O ( E ~ ) .  The dot carries a 
factor ( - U ) ,  where the Wilson (1972) value of U is U = 87r2e/(n + 8 ) + 0 ( e 2 ) ,  even for 
the cylindrical Brillouin zone used here. The combinatoric factor associated with the 



1948 A J Bray and M A Moore 

1 0 

Figure 6. Order E contribution to &(O, 0). 

loop is ( n  + 2 ) .  We will make the standard subtraction of the loop at x = CO to 
compensate for the T, shift introduced by the quartic interaction. Hence we obtain 

&B'(o, 0) = ~ B ' ( o ,  0)- (n  + 2)u J dx iB'(0, x)tB'(x, 0) 1 (i$(x, x) 
0 P < A  

- ipS'(a3, CO))+ O ( 2 )  (4.3) 

eB'(0, O)=--T-T(-)  1 c* ~ T ' E  n + 2  lom dx exp(-2kx) 1 -exp(-2px)+O(~~)  1 (4.4) 
k k k n + 8  P < A  2P 

1 c* 2 x 2 r ( n + 2 )  
k k k n + 8  p < ~ p ( p + k )  &E'(O, 0 ) = - - - - 7  - + O(E2). (4.5) 

To leading order the sum over p may be evaluated in three dimensions (i.e. the 
three-dimensional surface of a four-dimensional system) to give 

&;'(O, O)=--T-T(-)(A-k 1 c* E n + 2  
k k k n + 8  

for A >> k. The strongly divergent term which is linear in the cut-off A is eliminated by 
choosing 

n + 2  
n + 8  

c* = -E(  -)A + O(E'). 

The remaining two terms in equation (4.6) may be combined to yield 

(4.7) 

whence one identifies the critical exponent 

7;" = - [ ( n  + 2 ) / ( n  + 8 ) ] ~  + O(e2).  (4.9) 

Note that, for n = 00, this agrees with equation (3.40). 
It is interesting, and straightforward, to generalise equation (4.6) to arbitrary c. 

One simply uses equation (3.9b) (with K = k) in equation (4.3), keeping c arbitrary. 
The result is 

(4.10) 

Setting c = c* ,  equation (4.7)) and expanding to O(E),  gives back equation (4.8). 
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Another case of interest is k = 0, c << A, which gives 

GiLO(O, O)=-- - ( - ) (A-2c  1 c n + 2  
c c’ n + 8  C 

X(n+2)/(n+8)1~ 

+ O(E2). (4.11) 

The exponent which governs the divergence of &=O(O, 0) as c + c* may be deter- 
mined by scaling arguments. In addition to the Standard scaling correspondence k - t” 
we argue in 0 5 that there is a scaling correspondence c-c*- t ’ - ’ .  Hence the 
dependence on c - c* at t = 0 = k follows from 

(4.12) 

According to equation (4.1 1) we have 

-(1-7$)= U 1+2E(-)+O(€’) n + 2  
1 - V  n + 8  

which, using the standard result (Wilson 1972) 

1 1 n + 2  
2 4 n + 8  V = -+-( -)E + O(E2), 

gives back equation (4.9). Thus the scaling correspondence c - c* - t l -”  is verified to 
O ( 2 ) .  

4.2. Infinite problem 

The computation proceeds exactly as in the semi-infinite case, except that the mean- 
field propagators are given by equation ( 3 . 9 ~ )  instead of equation (3.9b), and the 
integration over x in equation (4.3) extends from -CO to 00 instead of from 0 to CO. 

The analogue of equation (4.10) for the infinite problem is 

1 n + 2  
In( 

+ 1) - k In( $ + 1) ] + O(E ’). 

(4.13) 

In contrast to equation (4.10), there is no term linear in the cut-off A in equation 
(4.13). This is because the critical value of c for splitting off a surface phase remains 
c = 0 exactly, corresponding to the bulk transition. Setting c = 0 in equation (4.13) 
yields &CO, 0)= l /k ,  the expected bulk result with bulk exponent 7 = 0 to O(E) (in 
general &(o, 0)- 1/k1-’). On the other hand, the case k = 0, c << A yields 

&@, o)=-+-(-) 1 E n + 2  In (-) 211, + o ( E ~ )  

c c n + 8  C 

(4.14) 
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The scaling correspondences k - tu,  c - tl-” (see 0 5 )  imply that 

v n + 2  
l - V  n + 8  
- ( 1 - 77 ) = 1 + €( -) + 0 ( E  Z), 

which is readily verified using the standard expansion for v, and recalling that 7) = 0 to 
O(E)* 

5. Scaling arguments 

5.1. The ordinary transition 

Scaling relations between the various surface critical exponents have been derived by 
Fisher (1971, 1973), Binder and Hohenberg (1972, 1974) and Barber (1973a). The 
basic assumption is that the free energy associated with the surface has the scaling 
form 

where h is a uniform field and hl  a field applied in the surface only. One distinguishes 
between ‘global’ and ‘local’ quantities. ‘Global’ quantities, such as the surface free 
energy F,, the total surface magnetisation .m, = dF,/ah and the total surface suscep- 
tibility xs = a2F,/ah2, are proportional to the surface area and diverge with exponents 
labelled with subscripts ‘s’: F, - m, - (?Iss, xS - t P .  ‘Local’ quantities, e.g. xl,l = 
a2F/ah:, x1 = aZF/ahahl, m l  = aF/ahl, are defined at a point in the surface, and 
diverge with exponents labelled with subscripts ‘1’: XI,]  - fCY1 , ’ ,  X I  - f-”,  ml - It(P1. 

The ‘global’ exponents are readily determined in terms of the bulk exponents by 
the following argument. First, we make the assumption (Binder and Hohenberg 1972, 
1974, Barber 1973a, Fisher 1971, 1973) that there is a single diverging correlation 
length 6 as the critical point is approached. Then the local free energy density fs(z) is 
assumed to have the scaling form 

fdz) = tZ-”g(z/0 (5.2) 

where g(cO)= 1, i.e. the usual bulk result is recovered far from the surface. Then the 
total free energy associated with the surface is 

Therefore one identifies 

CY,= CY + v. (5.4) 
Similar arguments yield 

P s = P - v  
ys = y + v. 

Relationships between the local exponents are obtained by taking derivatives of 
F,, equation (5.1), with respect to the fields h, h l .  Results are (Binder and Hohenberg 
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1972, 1974, Barber 1973a, Fisher 1971, 1973) 

P i +  Ai  = 2-aS  = 2 - c ~  - v 

Pi + 71.1 = Ai  

2% - y1,1 = ys = y + v. 

(5.7) 

(5.8) 

(5.9) 

Note that equation (5.8) was derived in § 2 as equation ( 2 . 1 7 ~ ) .  The exponent 
will not be considered explicitly here, but may be derived from  SI,^ = A1//31, equation 
(2.176). Scaling relations involving the correlation exponents may be derived by 
writing the correlation function in scaling form (Binder and Hohenberg 1972) to give 

y1= 4 2  - 771) (5.10) 

71.1 = 4 1  - 7711). (5.11) 

Combining these with equation (5.9) and using the bulk scaling law y = v(2 - 77) yields 
a relation for the 77 (Lubensky and Rubin 1975b): 

(5.12) 

A convenient equation for PI may be obtained by adding equations (5.7) and (5 .8) ,  
substituting for yl,l from equation (5.1 l ) ,  and using the bulk scaling law 2 - a = dv to 
give 

(5.13) 

a form reminiscent of the bulk scaling law /3 = (v/2)(d - 2 + 77). 
It is important to notice that equations (5.7)-(5.11) determine all the surface 

exponents in terms of bulk exponents if any one surface exponent is known, since they 
are five independent equations for the six exponents PI, AI,  y1,1, y1, q1 and 7711, In this 
section we will derive an extra scaling law, = v - 1, and thence determine all the 
surface exponents for the ordinary transition. 

The principal theoretical idea is that the characteristic feature of a ‘surface’ 
problem is the loss of translational invariance due to the existence of the surface, 
rather than the semi-infiniteness of the problem. We suggest that all the richness of 
the theory of phase transitions in semi-infinite systems (with the possible exception of 
the special transition) may be observed in the bulk system by applying a perturbation 
which destroys the translational invariance. If this ‘surface’ perturbation takes the 
form, as in equation ( l . l ) ,  of a term which is already present in the bulk Hamiltonian, 
then it is not surprising that the critical exponents in the presence of the perturbation 
are expressible in terms of the usual bulk exponents. 

We begin by considering the Hamiltonian of equation (1.1) with the integration 
extending over all space and with hl  = 0 and c < 0. If n and d are such that the surface 
can order at a higher temperature than the bulk, then the surface transition tem- 
perature TC(c) is related to c by the crossover exponent ds (compare equation (2.24)) 
according to 

r C ( c ) -  Tc(o)a/c11/4s (5.14) 
as c +O-. Our results are based on the observation (Bray and Moore 1977b) that ds 
may be deduced from the scaling properties of the surface perturbation 

7711 = 2771 - 77. 

Pi  = (v/2)(d - 2 + 7711), 

n 

H, = t c  ddx S(t) 1 4?(x) I i = l  
(5.15) 
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under a renormalisation group transformation R (Ma 1973a, b, Fisher 1974, Wilson 
and Kogut 1974) in which all lengths are scaled by a factor 6, i.e. R is the trans- 
formation x + bx'. Since Zy=l &x) is simply the energy density, its singular part e(x) 
behaves in the bulk as or , and therefore scales as b-"")" . Thus 

e(x)+ b-(l-")/l' I e (x' = x / b )  

and 

RH, = $ b d - 1 - ( 1 - a ) / ~  ddxt S(z')e'(x'). (5.16) 

Hence, under the transformation R, the parameter c is rescaled as 

(5.17) 

where we have used the bulk scaling law 2 - (Y = dv. According to the standard theory 
of the renormalisation group (e.g. Fisher 1974), if the parameter g which measures the 
strength of a perturbation to the Hamiltonian rescales as g' = b'g, then the crossover 
exponent associated with g is q5 = vA. For the present case, therefore, the crossover 
exponent is 

q5s=1-v. (5.18) 

The same result may be obtained by means of a heuristic argument. Consider a 
fluctuation which tends to order the system near the plane z = 0. The spatial extent of 
the fluctuation is governed by the correlation length 6, i.e. the region -6 5 z 5 6 is 
ordered. Such a fluctuation increases the bulk free energy (per unit area of the plane 
z = 0) by an approximate amount t2-a[. For c < 0, however, the perturbation H, acts 
to reduce the free energy per unit area by an approximate amount [clfl-", to lowest 
order in c. Hence the total change of free energy (per unit area) due to the fluctuation 
is 

(5.19) 

If r*-' < IC], so that SF,< 0, the fluctuation is energetically favoured and the plane 
z = 0 will order. The critical temperature t, for the formation of a surface phase 
therefore satisfies t,'-"= I C /  which implies 4, = 1 - v. For v > 1, SF,> 0 for small t so 
that a fluctuation which orders the surface is energetically unfavourable. We conclude 
that for v > 1 no surface phase can exist. The case v = 1 is marginal. Au-Yang (1973) 
has shown that the semi-infinite two-dimensional Ising model (which has v = 1) does 
not exhibit a surface phase. 

Why does equation (5.19) not prove that a surface phase exists whenever v < l ?  
The full renormalisation group argument given above indicates that equation (5.19) 
represents the start of an expansion in power of c/t'-". For v < 1 and t small the 
higher order terms are important, so that equation (5.19) should be replaced by 

If a surface phase exists then SF, must be negative for small r, and the function f ( x )  
must have a zero at x = XO< 0. Then the surface critical temperature satisfies t:-"= 
C/XO, giving q5, = 1 - v as before. The terms neglected in equation (5.19) therefore 
change the magnitude of r, without affecting its dependence on c. It may happen, 
however, that f ( x )  is positive for large x (i.e. small t).  Then a fluctuation to a state of 
surface order is energetically unfavourable and no surface ordering will occur. Note 

c l  = b d - l - ( l - a ) / v C  = b(l-L')/L'c 

SF,- f2-"6- lc(tl-" - t'-"(t'-" - IC]). 

SF,- t2-"-'f(C/r1-'). 
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that for v > 1 the terms neglected in equation (5.19) are negligible for small t so that 
the statement that there can be no surface ordering for this case is rigorously correct. 
Indeed, for v > l  equation (5.17) shows that the surface Hamiltonian H, is an 
‘irrelevant operator’ in the renormalisation group sense (e.g. Fisher 1974) since c is 
reduced by each application of R .  Therefore, for v > 1 and c finite, the infinite system 
has bulk critical behaviour. 

For polymers, which are described by the Hamiltonian of equation (1.1) with n = 0, 
the result equation (5.18) has already been derived by de Gennes (1976) using an 
intuitive argument (de Gennes predicted 4s= 2/5, implicitly using Y = 3/5 for 
polymers). The behaviour of polymers at surfaces may provide an application for 
surface critical phenomena theory. 

We turn now to the computation of the critical exponents for the ordinary tran- 
sition. We start by considering the local susceptibility ,yl,l which is the k = 0, I = 0,  
2‘ = 0 form of the correlation function &(z, 2‘). In mean-field theory, the latter is 
given by equation (3.9a), with K = ( t  + k2)’ j2 .  Thus (see also equation (2.9)) 

1/2 -1 xy: = &(O, 0 )  = (c + 2t ) 

(5.20) 

which gives the usual result (equation (2.10)) yy?= -4. Note that equation (5.20) 
takes the form of an expression in powers of l/c. This is an important and general 
result, valid beyond mean-field theory. To see this, note that the mean-field pro- 
pagator, equation (3.9a), has itself an expansion in powers of l / c :  

(5.21) 

Furthermore, the mean-field propagator for the semi-infinite problem, equation 
(3.9b), has a similar expansion in powers of l /c,  but with coefficients which differ from 
those in equation (5.21) at order l / c2 .  To go beyond mean-field theory, we treat the 
quartic terms in the Hamiltonian of equation (1.1) as a perturbation, and in each order 
of perturbation theory we replace each mean-field propagator which appears by the 
expansion equation (5.21). Then, summing to all orders in the perturbation, we 
obtain a l / c  expansion for the exact correlation function &(z ,  z’), and hence a l / c  
expansion for xl,l of the form 

1 t - Y l . 1  

,y1,1= - - A T + + e s s  singular terms 
c C 

(5.22) 

where A is a constant. The exact results from the E expansion, equations (4.10) and 
(4.13), verify this form for both semi-infinite and infinite problems, if one replaces k 
by its scaling equivalent t’, and both results lead to the same identification yl,l= 
- 4 + i [ ( n  +2)/(n + 8 ) ] ~  +O(e2).  However, y1.1 can be determined exactly, since the 
renormalisation group argument given above implies that the first two terms in 
equation (5.22) become comparable when t’-” - c. Hence one deduces that 

Y l , l=v - l ,  (5.23) 

in agreement with the O ( E )  result above. 
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All other exponents follow from the scaling laws, (5.7)-(5.13), and the bulk scaling 

r l=v+(Y-1) /2  (5.24) 

r / 1 =  l - (y - l ) /2v  (5.25) 

Vll= l / v  (5.26) 

P I = ) +  v (d  -2)/2 (5.27) 

A,=(1- (~) /2 .  (5.28) 

Since the surface scaling laws are satisfied in all known cases, any one of the above 
results will suffice for the purpose of checking with exact results. The most convenient 
is the result for 711, which is known to O ( E )  (Lubensky and Rubin 1975b, and equation 
(3.34b)), for n = 00 (equation (3.33)) and for the two-dimensional king model (McCoy 
and Wu 1967) which has 711 = 1. All three exact results agree with equation (5.26). 

We have deliberately excluded from these comparisons the spherical model 
(Fisher and Barber 1972, 1973, Barber 1974, Barber et a1 1974), which has 7711 = 2 for 
all d. In terms of the continuum model used for the n = CO limit in § 3, the spherical 
model with a single overall constraint corresponds to replacing the local potential 
V ( z )  by its bulk value V(c0). This model is unphysical. For T = T,, for example, the 
surface potential required to effect the replacement of V ( z )  by V(m) is long range, 
falling off as 1/z2 for large z .  The critical exponents for such a model differ from those 
appropriate to a short-range surface potential (Bray and Moore 1977a). The exact 
results, equations (5.23)-(5.28), are restricted to short-range surface potentials, which 
fall off faster than l / z 2  as z + CO (Bray and Moore 1977a). 

The exact results derived in this section are based on the recursion relation (5.17) 
for an infinite system with a perturbation Hs in the plane z = 0. We now assert that 
the exponents for the ordinary transition in a semi-infinite system are identical to 
those of the infinite system. The argument is as follows. The recursion relation (5.17) 
drives c (for v < 1) to the fixed point value c =CO. (O(c2) terms neglected on the 
right-hand side of equation (5.17) could, in principle, lead to a finite fixed point value, 
but we think this unlikely as it would be hard to understand the physical significance of 
a finite value.) Therefore, we may as well set c =CO at the outset. But then the 
mean-field propagators for the infinite and semi-infinite systems, equations (3.9a, b),  
become identical so that the critical behaviour of the two systems is identical, order by 
order in a perturbation expansion in U, and hence the critical exponents are the same. 
The crossover exponent 4s is related to yl,l by yl,l = -& according to the argument 
leading to equation (5.231, and therefore & = 1 - v for the semi-infinite system also. 
For the semi-infinite system, however, equation (5.14) must be modified to read 
T , ( c ) - T , ( 0 ) ~ ( c * - c ) l ~ ~ s ,  as c+c*-- ,  where c* is the value of c appropriate to the 
special transition. The recursion relation (5.17) reads, for the semi-infinite system 

law 2 -cy = dv. The results are: 

(c -c*y = bd-l-(l-asp)/u (c - c * )  (5.29) 

where (1 -asp) is the exponent describing the singularity in the energy density in the 
plane z = 0 at the special transition. The assertion that # J ~  is the same for infinite and 
semi-infinite systems implies that asp = a. Note that the validity of the scaling cor- 
respondence c - t’-” was verified to O(E) for both infinite and semi-infinite systems in 
8 4. 
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Finally we note that the explicit form of the quartic term in equation (1.1) was not 
used in deriving the exact results for the exponents. Equations (5.23)-(5.28) are 
therefore valid quite generally, provided the appropriate bulk exponents are used. 

5.2. The surface transition 

The critical exponents for the surface transition are simply the bulk exponents for the 
(d  - 1)-dimensional system. To prove this assertion we observe that, for an infinite 
system with c < 0, the recursion relation (5.17) drives c (for v < 1) to the fixed point 
value c = -W. Similarly, for a semi-infinite system with c < c* ,  c is driven (for v < 1) 
to the fixed point value c = -CO by the recursion relation (5.29). (Again, terms of 
O(c2) ,  O((c -c*) ’ )  on the right-hand sides of equations (5.17), (5.29) respectively 
could drive c to a finite negative value, but, as before, this seems unlikely on physical 
ground.) Therefore we may as well take the limit c + -cm at the outset. 

For the infinite system with c < 0 we write the mean-field propagator, equation 
(3 .9a) ,  as 

where K = (t  + k2)1’2. For k = 0, the second term has a singularity at the surface 
critical temperature tc = $ 1 ~ 1 ’ .  Therefore we set t = $IC/’ + 7 in the second term, which 
becomes 

(5.31) 

as (c(+co. Hence for c = -00, &(z,  2’) breaks up into two terms, the first of which 
vanishes when either z or z’ is zero, and the second of which vanishes except when 
both z and z f  are zero. Moreover, the second term has the form of a mean-field 
propagator for a (d  - 1)-dimensional system. consider a computation of the exact 
propagator between two spins in the surface, Gk(O, 0). Then only the contribution, 
equation (5 .31) ,  to the mean-field propagator will contribute to &(o, 0) at each order 
of U in perturbation theory, since any term involving a propagator between a point in 
the surface and a point in the bulk will vanish identically. Therefore, provided that the 
(d  - 1)-dimensional system can order spontaneously at finite temperature, the critical 
exponents of the surface transition are identical to those of the (d - 1)-dimensional 
system. An exactly similar argument goes through for a semi-infinite system. 

5.3. The extraordinary transition 

The extraordinary transition may be viewed simply as a special case of the ordinary 
transition for which the surface field hl is finite. Its critical exponents may be 
computed exactly by a generalisation of the scaling argument which led to equations 
(5.4)-(5.6). For a finite surface field h l ,  the local free-energy density f s ( z )  is assumed 
to have the scaling form 

(5 .32)  

where [ x t - ’  is the usual correlation length and (,,,CC h;”’*’ is another characteristic 
length (McCoy and Wu 1967, Binder and Hohenberg 1972). The total free energy 
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associated with the surface is 
m m 

F, = Jo dz (fs(z)-fs(~)) = t2-= J dz W / T ,  z/&l)- 1). (5.33) 
0 

For >>[, i.e. hl<< fA1,  we set the second argument of g equal to zero and recover 
equation (5.3). In the limit t + 0 at fixed hl,  however, we have &, << 6. In this limit we 
set the first argument of g equal to zero to obtain 

(5.34) 

FsX f2-P(hl.  (5.35) 

To obtain equation (5.35) it was necessary to assume the convergence of the integral 
in equation (5.34). This is an additional assumption which goes beyond the usual 
scaling arguments. It is justified by its predictions, which agree with all known exact 
results. 

The singular contributions to the surface magnetisation density ml and the local 
susceptibility ,yl,l are obtained by taking derivatives of equation (5.35) with respect to 
hl ,  evaluated at finite h l .  All such derivatives carry the bulk free-energy density 
singularity t2-" as t + 0, as anticipated by the mean-field calculation of 0 2. Therefore, 
the surface gap exponent for the extraordinary transition is A; = 0. Scaling laws for 
the extraordinary transition are obtained by writing the surface free energy in the 
form of equation (5.1) (with h a bulk field parallel to the surface magnetisation), but 
with as= a and A; = 0. The analogues of equations (5.7)-(5.9) are 

(5.36) 

(5.37) 

(5.38) 

where the ye are longitudinal susceptibility exponents. Similarly, by writing the 
longitudinal spin-spin correlation function in scaling form, one obtains the analogues 
of equations (5.10), (5.12) and (5.13): 

yf = v(2 - q4") (5.39) 

77+ 2 q y -  77 (5.40) 
pl" = (v/2)(d - 2 + Ti'"). (5.41) 

From these scaling laws one deduces the exponent values 

yl",l= a -2 (5.42) 

d = - P  (5.43) 
q{*L = d + 2 (5.44) 

77:" = $(d + 2 + 77). (5.45) 
Note that the analogue of equation (5.11), y f , l  = v(1- q?") would imply ~ f , ~  = 
-v(d + 1) = a - 2 - v, a weaker singularity than the true result y f , l  = a - 2. Such a 
term is presumably present as a correction to scaling, but does not provide the 
dominant singularity. 
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For d = 4, equations (5.36) and (5.42) give p1" = 2 = -& in agreement with the 
mean-field results of 0 2, while equations (5.44) and (5.45) give q ~ y * ~ =  6 and q?L = 3 
in agreement with the mean-field calculations of LR. An additional check is provided 
by the two-dimensional Ising model (McCoy and Wu 1967) which has q{=4 ,  in 
agreement with equation (5.44). 

Finally we discuss the exponents associated with the transverse spin-spin cor- 
relation function. 

Consider the following situation in which there is an infinitesimal bulk field h and 
in addition a small transverse field h: in the surface. For an infinite system BrCzin and 
Wallace (1973) have shown that for t<O the transverse components of the field 
variables have their canonical scaling dimensions (d - 2)/2. This means that the 
transverse magnetisation " ( 2 )  set up by the transverse surface field will fall off with 
distance from the surface as z - ( ~ - ~ ' / ~ .  But 

" ( 2 )  = &?=o(z, O)hT (5.46) 

which implies that &:=,(z, 0) should vary with z as z-(d-2)/2.  The z dependence of 
&;f(z, 0) can be expressed in terms of q{*=, but it is easier to recognise that the result 
for the correlation function in the large n limit already has the correct z dependence. 
Hence the results given in equations (3.53) and (3.54), namely qli'T=d, q';'=d/2 
are almost certainly valid outside the large n limit. Notice that the scaling relation 
2~~ = 711 + q does not directly apply to the transverse exponents unless one recognises 
that q for transverse correlations is effectively zero as the transverse field components 
have their canonical dimensions. 

6. Discussion 

The exact exponent results for the ordinary and extraordinary transition are sum- 
marised in table 1. These exponent values agree with all known exact results, namely, 
the two-dimensional Ising model, the E expansion to O ( E )  and the n = 00 limit. We 
exclude the spherical models discussed in the literature, since they are unphysical for 
reasons given earlier. We have been unable to find scaling arguments which give the 
exponents for the special transition. In table 2, the exponents for this transition are 

Table 1. Exact exponents for the ordinary and extraordinary transitions. In the right- 
hand column, (L) and (T) refer to longitudinal and transverse correlations respectively. 
The exponents for the surface transition are those of the (d - 1)-dimensional bulk system. 

Ordinary Extraordinary 
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Table 2. Critical exponents for the special transition to O(e) and for n = W. The results 
for 711 were derived in the text, the other results obtained from the scaling laws (5.7)- 
(5.13). 

Exponent O(f) n = W  

Y ;PI 4+3e(n+2)/4(n+8) (5 - d) / (d  - 2) 
Y i p  1 + 3 4 n  +2)/4(n + 8) (8 - d)/2(d - 2) 
P ;” t - 4 4  (d-3)i(d-2) 
A;P l+r (n- l ) /2 (n+8)  2 / ( d  - 2) 

1) 1” - ~ ( n  +2)/2(n+8) (d -4)/2 
SI? - r ( n + 2 ) / ( n  +8)  d - 4  

given to O(E)  and for n =W.  The scaling laws, (5.7)-(5.13), have been used to derive 
all the exponent values from those for q11 given earlier. 

All four transitions may be observed in the C-t plot of figure 7, which is a section of 
the phase diagram with hl  = 0 = h. The ordinary transition corresponds to crossing the 
line t = O  above the point P, which is the point c = O  for the infinite system and the 
point c = c* for the semi-infinite system. The bulk (or special) transition corresponds 
to crossing the line t = 0 at the point P for the infinite (or semi-infinite) system. The 
surface transition corresponds to crossing the line PQ and the extraordinary transition 
to crossing the line t = 0 below the point P. The extraordinary transition may also be 
observed in the hl-t plot of figure 8, which is a section of the phase diagram with c 
constant and h = 0. The extraordinary transition corresponds to crossing the line t = 0 
at any h l  # 0, regardless of the value of c. The nature of the transition for hl = 0 
depends on the value of c according to figure 7. 

The nature of the phase diagram, figure 7, when the surface transition does not 
occur (i.e. when the (d - 1)-dimensional system has no phase transition) is an interes- 
ting problem. For the infinite system the point P remains fixed at c = 0, corresponding 

C 
A 

Figure 7. Phase diagram as a function of c and t 
for hl = 0 = h. P is the point c = 0 for the infinite 
problem and c = c*  for the semi-infinite prob- 
lem. The shape of the line PQ near P is c - t’-* 
or c -c* - t’-” for infinite and semi-infinite 
problems respectively. Cross-hatched lines 
represent phase boundaries as described in the 
text. 

w e  8. Phase diagram as a function of hl  and 
t for c constant and h = 0. The extraordinary 
transition corresponds to crossing the line t = 0 
(cross-hatched) at any hi # 0. 
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to the bulk transition, but the line PQ disappears. We conjecture that, provided v < 1, 
crossing the line t = 0 at any c # 0 corresponds to the ordinary transition. For v > 1, of 
course, crossing the line t = 0 at any finite c corresponds to the bulk transition. For 
the semi-infinite system we conjecture that c* + --CO as d -$ dc(n) ,  the critical dimen- 
sionality for splitting off a surface phase, and that the point P is located at c = ---CO if 
there is no surface phase. Crossing the line t = 0 then corresponds to the ordinary 
transition for any finite value of c. 

In addition to the exact results referred to above, there are high-temperature 
series expansions, low-temperatuture series expansions, Monte Carlo analyses, and 
one experiment with which we may compare our predictions. 

High-temperature series expansions for the semi-infinite three-dimensional Ising 
model have been performed by Binder and Hohenberg (1972, 1974). These authors 
found that the values of the exponents appear to depend continuously on the value of 
the exchange enhancement parameter A (recall that the exchange interaction between 
spins in the surface is J ( l  +A)). For A < Ac- 0.6, the transition occurs at the bulk T, 
(the ordinary transition), with an 'effective exponent' y;ff which increases from y;ff - 
0.75 at A = -0.2 to yfff - 1.65 at A = 0.6. For A >  A, the transition occurs at a higher 
temperature (the surface transition) with y1 = y 2 d  = 7/4, the susceptibility exponent 
for the d = 2 k ing  model. Similar results were obtained €or the exponent yl,'. Binder 
and Hohenberg (1974) identified the apparent variation of the exponents for A < A, as 
an artefact of their rather short series, which sample the 'crossover' from the ordinary 
to the surface transition. We agree with this diagnosis, but believe that the crossover 
seen by the series expressions is between the ordinary and special transitions, since 
A = A c  is just that value of the exchange enhancement appropriate to the special 
transition. The mechanism of the crossover may be seen in equation (5.22). For this 
asymptotic form to hold one requires t - " '~  = t'-" << c. In the opposite regime t'-" >> c 
(or t'--" >> c - c * )  the critical behaviour is dominated by the bulk (or special) critical 
exponents for the infinite (or semi-infinite) system. We conclude that no reliable 
values for the ordinary exponents can be extracted from the series data. In particular, 
we do not feel that Binder and Hohenberg's estimate y1 - 7/8  obtained with A = 0 
(since this choice of A gave the least curvature in the ratio plot) can be taken as 
contradicting our prediction y 1  = v + ( y  - 1)/2 - 3/4. 

Low-temperature series expansions have been performed by Barber (1973b) who 
obtained PI  = 0*72* 0.03 for the FCC lattice. Our prediction is PI  = $+ v(d -2)/2 - 
0.82. Low-temperature series, however, are often quite unreliable even for the bulk, 
since they often show seemingly spurious lattice dependences (Domb and Guttman 
1970). In addition, crossover effects may also play an important role here. 

Binder and Hohenberg (1974) have performed a Monte Carlo study of finite Ising 
films with periodic boundary conditions on the four sides, and free boundary con- 
ditions on the other two ends. The results are again very sensitive to the value of A 
with Pfff = 0.66 for A = 0 and P;" = 0.86 for A = -0.5. We believe that no reliable 
conclusions can be drawn. 

The one experiment to be performed so far is a measurement of P I  for NiO using 
LEED (Wolfram et a1 1971). For the Heisenberg model, with ~ 2 0 . 7 ,  we predict 
PI = 0.85. The experimental data are consistent with P1 = 1, but it is not clear that the 
data are sufficiently precise to distinguish between exponent values of unity and 0.85. 
Further experiments are clearly desirable. The exponent P1 would seem to be the 
most accessible experimentally, using a local probe such as LEED or the Mossbauer 
effect. With regard to the latter technique it has, to our knowledge, not yet been 
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demonstrated that the local magnetisation in the neighbourhood of the Mossbauer 
impurity has the same critical behaviour as the magnetisation far from the impurity. 
That this is so is readily proved if the impurity is represented by a term in the 
Hamiltonian similar to that which represents the surface in equation (5.15): 

where we have located the impurity at x = 0 and the &function is d-dimensional so 
that the impurity is a point defect. Under a scale transformation g is rescaled in a 
fashion analogous to the rescaling of c in equation (5.17), namely 

Provided a < 1 (which is always the case in practice) the perturbation HI is an 
irrelevant operator, and the Mossbauer effect may be used with full confidence that 
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of severe crossover problems, so that the extant calculations do not provide reliable 
values for the exponents. Similar crossover problems may complicate the inter- 
pretation of experimental data. 
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Appendix 

We wish to evaluate the integral 

I = lom dttd-3(tIF(t)K,(t)-i). 

Since the two contributions do not separately converge, it is convenient to write 

Jo exp(-Et) 
I = !z lo dt td -3(  t l ,  (t )K, (( 1 + E ) f ) - 

The first term is now a convergent integral and gives (Gradshteyn and Ryzhik 1965, 
p 693, no. 5) 

r[$(d - l)+p]r[;(d - l)] 
2 - + i)( i  Il= 3 d 

where F(a,  p ;  y ;  x )  is the hypergeometric function. Using one of the transformation 
formulae for hypergeometric functions (Gradshteyn and Ryzhik 1965, p 1043, equa- 
tion (9.131) no. 2) we can write II in the form 

T(d - 2) + 
23-d[i - ( I + ~ ) - * ] ~ - ~ ( I  +e)d-l+F 

x +,- 3 - d  3 - d  + p ; 3  - d ;  1 - (1 + E ) y )  

2 

The second contribution to equation (A. 1) is readily evaluated: 

Adding Il and 1 2  and taking the limit E + 0 gives the desired result, equation (3.27). 
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